Skip to content

Reset Java Web Start (javaws, jp2launcher, JNLP) file associations

Since I was currently playing around with making JavaWeb Start of IcedTea-Web a bit more robust I was collecting the registry keys where JWS would associate itself with files and URL schemes.

As a result I created a Windows Registry export file which DELETES all those locations, so you have a system reset to the beginning (before you reinstall Java SE or OpenJDK installers). Here is the file, in case you need something similar. Note that it only deals with JNLP related entries, no other settings from JDKs are destroyed.

In case you wonder Firefox will remeber the JNLP entries in the handlers.json file in the profile. I make it a habit to delete that file every now and then.

Download: deljnlp.reg

Windows Registry Editor Version 5.00

; deletes most of the file associations dealing 
; with Java Web Start JNLP files and URLs

; !!! use at your own risk !!! regedit /s deljnlp.reg

[-HKEY_LOCAL_MACHINE\SOFTWARE\Classes\.jnlp]

[-HKEY_CURRENT_USER\Software\Classes\.jnlp]

[-HKEY_CLASSES_ROOT\.jnlp]


[-HKEY_LOCAL_MACHINE\SOFTWARE\Classes\jnlp]

[-HKEY_CURRENT_USER\Software\Classes\jnlp]

[-HKEY_CLASSES_ROOT\jnlp]


[-HKEY_LOCAL_MACHINE\SOFTWARE\Classes\jnlps]

[-HKEY_CURRENT_USER\Software\Classes\jnlps]

[-HKEY_CLASSES_ROOT\jnlps]


[-HKEY_LOCAL_MACHINE\SOFTWARE\Classes\JNLPFile]

[-HKEY_CURRENT_USER\Software\Classes\JNLPFile]

[-HKEY_CLASSES_ROOT\JNLPFile]


[-HKEY_LOCAL_MACHINE\SOFTWARE\Classes\jnlp_auto_file]

[-HKEY_CURRENT_USER\Software\Classes\jnlp_auto_file]

[-HKEY_CLASSES_ROOT\jnlp_auto_file]


[-HKEY_LOCAL_MACHINE\SOFTWARE\Classes\MIME\Database\Content Type\application/x-java-jnlp-file]

[-HKEY_CURRENT_USER\Software\Classes\MIME\Database\Content Type\application/x-java-jnlp-file]

[-HKEY_CLASSES_ROOT\MIME\Database\Content Type\application/x-java-jnlp-file]


[-HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\FileExts\.jnlp]


; TODO the following list might not be complete, if scripting: "*_.jnlp"
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\ApplicationAssociationToasts]
"JNLPFile_.jnlp"=-
"jnlp_auto_file_.jnlp"=-
"Applications\\javaws.exe_.jnlp"=-
"Applications\\javaws.bat_.jnlp"=-
"Applications\\javaws.cmd_.jnlp"=-
"Applications\\jp2launcher_.jnlp"=-
"Applications\\notepad.exe_.jnlp"=-
"Applications\\wordpad.exe_.jnlp"=-

[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\ApplicationAssociationToasts]
"JNLPFile_.jnlp"=-
"jnlp_auto_file_.jnlp"=-
"Applications\\javaws.exe_.jnlp"=-
"Applications\\javaws.bat_.jnlp"=-
"Applications\\javaws.cmd_.jnlp"=-
"Applications\\jp2launcher_.jnlp"=-
"Applications\\notepad.exe_.jnlp"=-
"Applications\\wordpad.exe_.jnlp"=-


[-HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\javaws.exe]

[-HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\App Paths\javaws.exe]


[-HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\App Paths\javaws.exe]

[-HKEY_CURRENT_USER\Software\WOW6432Node\Microsoft\Windows\CurrentVersion\App Paths\javaws.exe]


[-HKEY_LOCAL_MACHINE\SOFTWARE\Classes\JavaWebStart.isInstalled]

[-HKEY_CURRENT_USER\Software\Classes\JavaWebStart.isInstalled]

[-HKEY_LOCAL_MACHINE\SOFTWARE\Classes\JavaWebStart.isInstalled.1.8.0.0]

[-HKEY_CURRENT_USER\Software\Classes\JavaWebStart.isInstalled.1.8.0.0]

Let´s Encrypt (this blog)

Lange hat es gedauert, aber jetzt läuft auf neskaya, dem Server hinter eckenfels.net kein Apache httpd auf port 80. (Nur noch nginx in minimalkonfig um auf https und 443 umzuleiten.)

Der https content wird weiterhin von einem Apache mit mod_ssl und einem Let's Encrypt Zertifikat das von EFF certbot verwaltet wird ausgeliefert.

Es ist eine kleine Unmöglichkeit einen apache 2.4 auf port 80 und 443 gleichzeitig zu konfigurieren...

Aber damit sind jetzt alle Seiten https verschlüsselt (und ggf. müssen noch einige sites daraufhin angepasst werden).

TCP Keepalive bei Oracle Servern

Zu einer TCP Verbindung zwischen zwei Endpunkten gehört auch, sich darüber einig zu sein ob eine Verbindung noch besteht oder nicht. Wartet eine Seite auf weitere Daten und ist die andere Seite inzwischen verschwunden, so sieht die wartende Seite nichts von dem TCP Verbindungsabbruch.

Dies geschieht nur, wenn die TCP Verbindung unsauber abgebrochen wurde. Ursachen einer solchen unsauberen Verbindungsbeendigung könnte Stromausfall, Hardwarecrash, Kernelpanic oder das unerwartete entfernen der IP-Addresse (wie z.B. bei Failover-Clustern) sein. Ebenso kann ein Netzwerkausfall dazu führen dass die Beendigung einer Verbindung nur auf einer Seite bekannt wird. Manche Firewalls die eine Verbindung nur eine bestimmte Zeit zulassen können hier auch zu Problemen führen.

Übrigens, ein Beenden der Anwendung (auch mit kill -9) alleine führt nicht zu so einer Situation. Denn das Betriebsystem schliesst alle Sockets eines beendeten Prozesses sauber.

Welche Methoden stehen für ein Endpunkt zur Verfügung einseitig bestehende Verbindungen mit Lese-Operationen zu erkennen?

  1. sie implementiert einen Lese-Timeout. Dies hat den Vorteil dass auch hängende Gegenstellen erkannt werden. Problem dabei ist aber die Dauer des Timouts. Ist dieser zu kurz gewählt so werden Verbindungen vorzeitig beendet wenn die Gegenstelle langsam antwortet. Um dies zu verhindern muss der Timeout recht groß gewählt werden. Bei Anwendungen die nur sehr sporadisch Anfragen bekommen und deren Verbindungen lange Zeit idle sein sollen lassen sich deswegen Timeouts fast garnicht verwenden.
  2. die Seite die lesend auf dem Socket wartet muss regelmäßig Daten senden oder erwarten. Dies wird gemeinhin als Heartbeat bezeichnet. Dieser hat aber den Nachteil dass zum einen das eingesetzte Protokoll solche Heartbeat Nachrichten erlauben (wenn ich auf eine Antwort warte und stattdessen eine Heartbeat Nachricht erhalte). Die Implementierung wird dadurch komplexer, braucht z.B. mehrere Threads oder Asynchrone methoden. Zudem hat das Versenden von Heartbeat Nachrichten auf einer Verbindung den Nachteil dass im Falle einer Unerreichbarkeit der TCP retry Mechanismus zuschlägt, der ggf. Relativ lange benötigen kann bis er Probleme feststellt,
  3. eine weitaus unproblematischere Möglichkeit ist der TCP Keepalive Mechanismus. Dieser wird entgegen seinem Namen hauptsächlich dazu verwendet abgerissene Connections zu erkennen. Der Mechanismus funktioniert so, dass auf der Seite einer TCP Verbindung auf der Keepalive aktiv ist (ggf. auf beiden) regelmäßig geprüft wird ob eine erfolgreiche Kommunikation stattfand, oder der Socket idle ist. Wenn er Idle ist weil nichts versendet oder empfangen wurde so sendet der Keepalive Mechanismus ein leeres TCP Paket. Die Anwendungen selbst bekommen davon nichts mit, nur der TCP Stack der Gegenseite bestätigt das Paket. in Fehler beim versenden führt zu einem Abbruch der Verbindung, genauso wie das ausbleiben von einer Antwort nach eingestellter Wiederholung.

Um das in der Praxis zu sehen habe ich eine Oracle 12c mit „Dead Client Detection“ konfiguriert. Dabei handelt es sich um eine Option welche den TCP Keepalive auf eingehenden Client Connections anschaltet (und auch gleich auf den angegebenen Wert in Minuten konfiguriert). Das ist deswegen ganz praktisch weil der default Wert unter Linux bei 2h liegt und damit nicht nur relativ nutzlos ist, sondern auch zum testen sehr langatmig.

Wenn ich jetzt eine Oracle Verbindung aufbaue, so werden nur Daten an den Server gesendet wenn ich im Client einen SQL Befehl absetze. Mit netstat oder dem neueren ss (socket statistics) kann man den Zustand der TCP timer einer einzelnen Verbindung betrachten. In diesem Fall verwende ich die -o option gibt die timer Information mit aus.

[oracle@bernd-db centos]$ netstat -tnpo
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name     Timer
tcp        0      0 10.14.100.82:22         10.0.103.42:53111       ESTABLISHED -   on (0.22/0/0)
tcp        0      0 127.0.0.1:58466         127.0.0.1:1521          ESTABLISHED 1207/ora_lreg_orcl   off (0.00/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (22.76/0/0)

Um nur die relevante Verbindung fortwährend zu betrachten verwende ich die -c option. Mittels grep beschränke ich mich auf eine Verbindung. (Dieses Filtern kann mit ss effizienter gemacht werden, aber auf meinem Testsystem gibt es keine große Anzahl an Verbindungen) Parallel dazu läuft folgender tcpdump Befehl

[oracle@bernd-db centos]$ sudo tcpdump  -ttt -nn --dont-verify-checksums -U -v host 10.0.103.42 and port 54076 &
[1] 18819
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes

[oracle@bernd-db centos]$ netstat -tnpoc 2>/dev/null | grep 10.0.103.42:54076
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (8.66/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (7.65/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (6.64/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (5.64/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (4.63/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (3.62/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (2.61/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (1.61/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (0.60/0/0)

 00:00:00.000000 IP (tos 0x0, ttl 64, id 2241, offset 0, flags [DF], proto TCP (6), length 40)
    10.14.100.82.1521 > 10.0.103.42.54076: Flags [.], ack 3621868956, win 1184, length 0
 00:00:00.001712 IP (tos 0x0, ttl 124, id 10289, offset 0, flags [DF], proto TCP (6), length 40)
    10.0.103.42.54076 > 10.14.100.82.1521: Flags [.], ack 1, win 256, length 0

tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (5.61/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (4.60/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (3.59/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (2.59/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (1.58/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (0.57/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (53.93/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (52.92/0/0)
...

Was ist passiert? In diesem Beispiel sieht man die letzten 8 Sekunden des herabzählenden keepalive timers. In der ganzen Minute davor wurden keine Daten ausgetauscht, und so sendet der Kernel beim Ablauf des Timers ein leeres ACK Paket (Flags [.] length 0) und wartet 6 weitere Sekunden bevor er prüft ob dieses angekommen ist. Wenn ja setzt er einen neuen Timer auf (60s abzüglich der bereits gewarteten knapp 6s)

Der Keepalive Timer wird bei Oracle 12.2 mit der Option sqlnet.expire_time=1 in ${ORACLE_HOME}/network/admin/sqlnet.ora auf eine Minute konfiguriert. Das Wiederholungsintervall von 6s wird durch Oracle fest vorgegeben.

Wenn ich jetzt 18 Sekunden bevor der Timer abläuft eine Client Anfrage stelle, so ändert sich die Ausgabe etwas:

tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (19.71/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (18.70/0/0)

 00:01:41.833122 IP (tos 0x0, ttl 124, id 10335, offset 0, flags [DF], proto TCP (6), length 61)
    10.0.103.42.54076 > 10.14.100.82.1521: Flags [P.], seq 1:22, ack 1, win 256, length 21
 00:00:00.000306 IP (tos 0x0, ttl 64, id 2242, offset 0, flags [DF], proto TCP (6), length 55)
    10.14.100.82.1521 > 10.0.103.42.54076: Flags [P.], seq 1:16, ack 22, win 1184, length 15
 00:00:00.007188 IP (tos 0x0, ttl 124, id 10337, offset 0, flags [DF], proto TCP (6), length 53)
    10.0.103.42.54076 > 10.14.100.82.1521: Flags [P.], seq 22:35, ack 16, win 256, length 13
 00:00:00.000077 IP (tos 0x0, ttl 64, id 2243, offset 0, flags [DF], proto TCP (6), length 55)
    10.14.100.82.1521 > 10.0.103.42.54076: Flags [P.], seq 16:31, ack 35, win 1184, length 15
 00:00:00.041996 IP (tos 0x0, ttl 124, id 10339, offset 0, flags [DF], proto TCP (6), length 40)
    10.0.103.42.54076 > 10.14.100.82.1521: Flags [.], ack 31, win 256, length 0

tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (17.69/0/0)

 00:00:00.881484 IP (tos 0x0, ttl 124, id 10342, offset 0, flags [DF], proto TCP (6), length 139)
    10.0.103.42.54076 > 10.14.100.82.1521: Flags [P.], seq 35:134, ack 31, win 256, length 99
 00:00:00.000610 IP (tos 0x0, ttl 64, id 2244, offset 0, flags [DF], proto TCP (6), length 234)
    10.14.100.82.1521 > 10.0.103.42.54076: Flags [P.], seq 31:225, ack 134, win 1184, length 194
 00:00:00.003408 IP (tos 0x0, ttl 124, id 10344, offset 0, flags [DF], proto TCP (6), length 61)
    10.0.103.42.54076 > 10.14.100.82.1521: Flags [P.], seq 134:155, ack 225, win 255, length 21
 00:00:00.000238 IP (tos 0x0, ttl 64, id 2245, offset 0, flags [DF], proto TCP (6), length 55)
    10.14.100.82.1521 > 10.0.103.42.54076: Flags [P.], seq 225:240, ack 155, win 1184, length 15
 00:00:00.041847 IP (tos 0x0, ttl 124, id 10346, offset 0, flags [DF], proto TCP (6), length 40)
    10.0.103.42.54076 > 10.14.100.82.1521: Flags [.], ack 240, win 255, length 0

tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (16.69/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (15.68/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (14.67/0/0)
...
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (7.62/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (6.61/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (5.61/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (4.60/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (3.59/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (2.58/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (1.57/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (0.57/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (42.22/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (41.21/0/0)

Es ist aber wieder zu sehen dass der Timer erst auf 0 zählt, dann erkennt dass ein Austausch vor 18 Sekunden stattfand, und deswegen einen neuen Timer mit der verbleibenden Restzeit von 40 Sekunden aufzieht aber kein ACK Paket versendet.

Um jetzt zu sehen was passiert wenn der Client keine Antworten versendet installiere ich einfach eine Firewall Regel die alle Pakete verwirft (DROP nicht REJECT):

[oracle@bernd-db centos]$ iptables -I INPUT -p tcp -s 10.0.103.42 --sport 54076 -j DROP

Im Folgenden habe ich die Antwort-Pakete (die tcpdump noch sieht) entfernt:

tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (2.31/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (1.30/0/0)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (0.30/0/0)

 00:02:00.190237 IP (tos 0x0, ttl 64, id 2258, offset 0, flags [DF], proto TCP (6), length 40)
    10.14.100.82.1521 > 10.0.103.42.54076: Flags [.], ack 155, win 1184, length 0

tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (5.31/0/1)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (4.30/0/1)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (3.29/0/1)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (2.28/0/1)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (1.27/0/1)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (0.27/0/1)

 00:00:06.014269 IP (tos 0x0, ttl 64, id 2259, offset 0, flags [DF], proto TCP (6), length 40)
    10.14.100.82.1521 > 10.0.103.42.54076: Flags [.], ack 155, win 1184, length 0

tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (5.27/0/2)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (4.27/0/2)
...
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (1.04/0/9)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (0.03/0/9)

 00:00:06.014242 IP (tos 0x0, ttl 64, id 2267, offset 0, flags [DF], proto TCP (6), length 40)
    10.14.100.82.1521 > 10.0.103.42.54076: Flags [.], ack 155, win 1184, length 0

tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (5.04/0/10)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (4.04/0/10)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (3.03/0/10)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (2.02/0/10)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (1.01/0/10)
tcp6       0      0 10.14.100.82:1521       10.0.103.42:54076       ESTABLISHED 18470/oracleorcl     keepalive (0.01/0/10)

 00:00:06.013377 IP (tos 0x0, ttl 64, id 2268, offset 0, flags [DF], proto TCP (6), length 40)
    10.14.100.82.1521 > 10.0.103.42.54076: Flags [R.], seq 240, ack 155, win 1184, length 0

Wenn dieses mal der Timer abläuft ohne Datenaustausch, so wird das Keepalive Paket vom Server versendet und der Timer auf 6s gestellt. Da das Paket aber nicht durchkommt, so kam auch nach 6s keine Antwort zurück. Der Kernel auf Serverseite erkennt dies, zählt den Keepalive Zähler hoch (letzte Stelle innerhalb von timer (time/retries/keepalives)), sendet noch ein Paket und wartet erneut 6s.

Oracle hat den Retry auf 10 Probes konfiguriert, entsprechend wird bei der letzten Runde (nach einer Minue) kein Keepalive Paket mehr gesendet sondern die Connection resettet. (Flags [R.] - In meinem Fall bekommt der Client das RST nicht, wegen der Firewall). Hätte ich die Firewall Regel vor Ablauf der 10 retries entfernt, so hätte der normale Keepalive Ablauf wieder weiter gemacht.

Falls die Anwendung keine Konfiguration von TCP Keepalives pro Socket zulässt, so werden folgende Linux Kernel Werte verwendet:

[oracle@bernd-db oracle]$ sysctl net.ipv4.tcp_keepalive_time net.ipv4.tcp_keepalive_intvl net.ipv4.tcp_keepalive_probes
net.ipv4.tcp_keepalive_time = 7200
net.ipv4.tcp_keepalive_intvl = 75
net.ipv4.tcp_keepalive_probes = 9

Es gibt noch eine Besonderheit, wenn der Keepalive wiederholt wird, aber gleichzeitig auch Daten versendet werden, so wird der Keepalive Mechanismus ausgesetzt, stattdessen versucht der normale Retry Mechanismus Daten zu versenden, aber das soll Gegenstand eines anderen Blogposts sein.

Windows Server 2016 Images mittels DSIM für OpenStack vorbereiten

Für unsere OpenStack DevCloud benötigten wir Images für OpenStack die mit cloudbase-init starten. Dazu gibt es bei Cloudbase ein GIT repository das die nötigen (Powershell) Scripte bereitstellt.

https://github.com/cloudbase/windows-openstack-imaging-tools

Als ich dies jedoch auf einem Windows 2012 R2 Server nach Anleitung ausführen wollte was das resultierende Image nicht startfähig. Es gab Warnungen dass DSIM nicht aktuell genug ist und anscheinend wurden auch die VirtIO Treiber nicht integriert.

Hier sind ein paar Schritte mit denen es dann geklappt hat:

a) Git4Windows installieren.

b) ein Arbeitsverzeichnis anlegen und die Image Tools dorthin auschecken:

    mkdir c:\work
    cd /d c:\work
    git clone https://github.com/cloudbase/windows-openstack-imaging-tools.git
c) Aus einer Windows Server 2016 Installations-ISO das File sources\install.wim (5,6GB) extrahieren und nach c:\work\source\install.wim legen. (Ich habe dies mit einer Volume License ISO als auch dem 180 Tage Eval ISO erfolgreich gemacht)

d) Für Windows Server 2016 muss man eine DSIM Version verwenden die neuer ist. Dazu habe ich das Windows ADK für Windows 10, Version 1703 (Hardware Dev Center) auf dem Server installiert. Es gibt zwar auf der Webseite an dass dies nur für Windows 10 ist, jedoch war es in meinem Fall auch für Windows Server 2016 (Rollup CDs) notwendig.

e) nach der Installation ist es Wichtig das DSIM Verzeichnis dieses neuen Kits im Pfad vor dem Windows Systemverzeichnis zu haben (da dort eine alte DSIM Version gefunden wird). Man kann `(Get-Command dism.exe).Path` verwenden um zu sehen welches DISM verwendet wird. Ich habe es mir einfach gemacht und in das verwendete Powershell script einfach einen passenden Pfad gesetzt.

f) Im Beispielscript werden die RedHat VirtIO Treiber heruntergeladen, ich hatte die URL auf eine neue Version angepasst.

g) Das Offline Beispielscript habe ich angepasst dass es alle Verzeichnisse unter c:\work sucht, dass es nur ein 15GB Image anlegt (und weil dieses noch transportiert und gestartet werden muss habe ich es auch als QCow2 angelegt.

Hier das komplette script (auszuführen als privelegierter lokaler admin im Unterverzeichnis example): "Windows Server 2016 Images mittels DSIM für OpenStack vorbereiten" vollständig lesen

Converting IMAGE to VARBINARY(max) on SQL Server

With Microsoft SQL Server 2005 the IMAGE and (N)TEXT large data types have been deprecated in favor of VARBINARY(MAX) and (N)VARCHAR(max). We have some older database schema at customers who still use the IMAGE type so I am preparing a note to guide the migration.

There is an easy ALTER TABLE command to convert the existing tables, however it is not clear what the impact of this conversion is. So I took a deeper look. I noticed that converting a VARBINARY(max) back to IMAGE caused a lot of I/O and log usage. The other way around this seems to not happen and I can not repeat the problem.

Nevertheless I tried a few scenarios with type and parameter conversion. With IMAGE the default is to not inline data and it is configured with the 'text in row' table option which allows to define a limit of data which is inlined.

The following statement creates 4 tables with different settings for images, two heap tables and two clustered:

DROP TABLE tableHeapWithImageDefault;
DROP TABLE tableHeapWithImageInline;
DROP TABLE tableClusteredWithImageDefault;
DROP TABLE tableClusteredWithImageInline;

CREATE TABLE tableHeapWithImageDefault (cID INT identity(1,1) PRIMARY KEY NOT NULL, cImage IMAGE);
CREATE TABLE tableClusteredWithImageDefault (cID INT identity(1,1) PRIMARY KEY CLUSTERED NOT NULL, cImage IMAGE);

CREATE TABLE tableHeapWithImageInline (cID INT identity(1,1) PRIMARY KEY NOT NULL, cImage IMAGE);
EXEC sp_tableoption 'tableHeapWithImageInline', 'text in row', 'ON';

CREATE TABLE tableClusteredWithImageInline (cID INT identity(1,1) PRIMARY KEY CLUSTERED NOT NULL, cImage IMAGE);
EXEC sp_tableoption 'tableClusteredWithImageInline', 'text in row', 'ON';

If I query the details I see the following:

select name, type_desc, lob_data_space_id, text_in_row_limit, large_value_types_out_of_row from sys.tables where name like 'table%'

name                             type_desc     text_in_row_limit large_value_types_out_of_row
tableClusteredWithImageDefault   USER_TABLE    0                 0
tableClusteredWithImageInline    USER_TABLE    256               0
tableHeapWithImageDefault        USER_TABLE    0                 0
tableHeapWithImageInline         USER_TABLE    256               0

The large_value_type_out_of_row cannot be modified as long as the table does not contain a new large type.

So lets fill the tables with smaller and larger values (total blob size of (36000+180)*50000=1.6GB) for the cImage column and see what space usage the allocation units have:

while @x < 10 BEGIN
  set @x = @x + 1
  select @x
  BEGIN TRANSACTION
  declare @i int = 0;
  while @i < 5000 BEGIN
    INSERT INTO tableHeapWithImageDefault(cImage) VALUES(replicate(cast(newID() as VARCHAR(max)),5)) -- 180
    INSERT INTO tableHeapWithImageDefault(cImage) VALUES(replicate(cast(newID() as VARCHAR(max)),1000)) -- 36000
    INSERT INTO tableHeapWithImageInline(cImage) VALUES(replicate(cast(newID() as VARCHAR(max)),5))
    INSERT INTO tableHeapWithImageInline(cImage) VALUES(replicate(cast(newID() as VARCHAR(max)),1000))
    INSERT INTO tableClusteredWithImageDefault(cImage) VALUES(replicate(cast(newID() as VARCHAR(max)),5)) -- 180
    INSERT INTO tableClusteredWithImageDefault(cImage) VALUES(replicate(cast(newID() as VARCHAR(max)),1000)) -- 36000
    INSERT INTO tableClusteredWithImageInline(cImage) VALUES(replicate(cast(newID() as VARCHAR(max)),5))
    INSERT INTO tableClusteredWithImageInline(cImage) VALUES(replicate(cast(newID() as VARCHAR(max)),1000))
    SET @i = @i + 1
  END
  COMMIT TRANSACTION
END

The following query looks at the three possible types of allocation units (especially IN_ROW_DATA for data stored in the table and LOB_DATA for large external data. The third type, ROW_OVERFLOW_DATA, is not used in this example):

select o.name AS tablename, au.type_desc, CEILING(au.used_pages * 8 /1024.0) as usedMB,
       au.data_pages, au.used_pages, au.total_pages, p.partition_number, p.rows,
       au.used_pages * 8 * 1024 / p.rows as [bytes/row]
FROM sys.allocation_units AS au
  JOIN sys.partitions AS p ON au.container_id = p.hobt_id
  JOIN sys.objects AS o ON p.object_id = o.object_id
WHERE o.name like 'table%';

The result shows as expected where the data is stored (keep in mind the average length for the rows includes long and short rows).

tablename                       type_desc       usedMB    data_pages  used_pages   total_pages  rows  bytes/row
tableHeapWithImageDefault       IN_ROW_DATA          5    582         586          587          100000       48
tableHeapWithImageDefault       LOB_DATA          1778    0           227574       227611       100000    18642
tableHeapWithImageInline        IN_ROW_DATA         16    1961        1971         1971         100000      161
tableHeapWithImageInline        LOB_DATA          1758    0           225003       225035       100000    18432
tableClusteredWithImageDefault  IN_ROW_DATA          5    582         586          587          100000       48
tableClusteredWithImageDefault  LOB_DATA          1778    0           227574       227611       100000    18642
tableClusteredWithImageInline   IN_ROW_DATA         16    1961        1971         1971         100000      161
tableClusteredWithImageInline   LOB_DATA          1758    0           225003       225043       100000    18432

So now we can also record the data pages used for the allocation units so we can verify after conversion that the data has actually not been touched (idea):

select o.name, au.allocation_unit_id, au.type_desc, au.total_pages, au.first_iam_page, au.first_page, au.root_page
from sys.system_internals_allocation_units au
  JOIN sys.system_internals_partitions AS p ON au.container_id = p.partition_id
  JOIN sys.objects AS o ON p.object_id = o.object_id
WHERE o.name like 'table%';

With the following result:

name                           allocation_unit_id type_desc    total   first_iam_page first_page     root_page
tableHeapWithImageDefault      72057594197966848  IN_ROW_DATA  587     0x3DB302000100 0x3CB302000100 0x748707000100
tableHeapWithImageDefault      72057594198032384  LOB_DATA     227611  0x3BB302000100 0x38B302000100 0x38B302000100
tableHeapWithImageInline       72057594198097920  IN_ROW_DATA  1971    0xB91507000100 0x2E8B06000100 0x3FDA00000100
tableHeapWithImageInline       72057594198163456  LOB_DATA     225035  0x478707000100 0x418707000100 0x418707000100
tableClusteredWithImageDefault 72057594198228992  IN_ROW_DATA  587     0x4F8707000100 0x4E8707000100 0x768707000100
tableClusteredWithImageDefault 72057594198294528  LOB_DATA     227611  0x4D8707000100 0x4C8707000100 0x4C8707000100
tableClusteredWithImageInline  72057594198360064  IN_ROW_DATA  1971    0x558707000100 0x548707000100 0x4FDA00000100
tableClusteredWithImageInline  72057594198425600  LOB_DATA     225043  0x578707000100 0x568707000100 0x568707000100

So and now finally we can alter the columns:

SET STATISTICS TIME ON
ALTER TABLE tableHeapWithImageDefault ALTER COLUMN cImage VARBINARY(MAX);
ALTER TABLE tableHeapWithImageInline ALTER COLUMN cImage VARBINARY(MAX);
ALTER TABLE tableClusteredWithImageDefault ALTER COLUMN cImage VARBINARY(MAX);
ALTER TABLE tableClusteredWithImageInline ALTER COLUMN cImage VARBINARY(MAX);
SET STATISTICS TIME OFF

And this returns in elapsed time = 0ms with the following new data layout. What is visible at first is that it has generated empty ROW_OVERFLOW_DATA allocation units for all rows (this might indicate that the conversion could differ if the rows are (nearly) full, which is not the case for our narrow tables in the experiment).

name                           allocation_unit_id type_desc          total first_iam_page first_page     root_page
tableHeapWithImageDefault      72057594197966848  IN_ROW_DATA          587 0x3DB302000100 0x3CB302000100 0x748707000100
tableHeapWithImageDefault      72057594198032384  LOB_DATA          227611 0x3BB302000100 0x38B302000100 0x38B302000100
tableHeapWithImageDefault      72057594198491136  ROW_OVERFLOW_DATA      0 0x000000000000 0x000000000000 0x000000000000
tableHeapWithImageInline       72057594198097920  IN_ROW_DATA         1971 0xB91507000100 0x2E8B06000100 0x3FDA00000100
tableHeapWithImageInline       72057594198163456  LOB_DATA          225035 0x478707000100 0x418707000100 0x418707000100
tableHeapWithImageInline       72057594198556672  ROW_OVERFLOW_DATA      0 0x000000000000 0x000000000000 0x000000000000
tableClusteredWithImageDefault 72057594198228992  IN_ROW_DATA          587 0x4F8707000100 0x4E8707000100 0x768707000100
tableClusteredWithImageDefault 72057594198294528  LOB_DATA          227611 0x4D8707000100 0x4C8707000100 0x4C8707000100
tableClusteredWithImageDefault 72057594198622208  ROW_OVERFLOW_DATA      0 0x000000000000 0x000000000000 0x000000000000
tableClusteredWithImageInline  72057594198360064  IN_ROW_DATA         1971 0x558707000100 0x548707000100 0x4FDA00000100
tableClusteredWithImageInline  72057594198425600  LOB_DATA          225043 0x578707000100 0x568707000100 0x568707000100
tableClusteredWithImageInline  72057594198687744  ROW_OVERFLOW_DATA     0  0x000000000000 0x000000000000 0x000000000000

And on the second glance we notice that neither the AU unit ID nor the page addresses has changed for any of the IN_ROW_DATA or LOB_DATA. So this means the change from IMAGE to VARBINARY(max) is low impact for the tested cases.

When turning on the out_of_row setting for the table(Heap/Clustered)WithDefault tables (which had no inline data before) the situation does not change. The elapsed time = 0ms and the result is unchanged:

SET STATISTICS TIME ON
exec sp_tableoption 'tableHeapWithImageDefault', 'large value types out of row', '1';
exec sp_tableoption 'tableClusteredWithImageDefault', 'large value types out of row', '1';
SET STATISTICS TIME OFF

Results in this (removed overflows):

name                           allocation_unit_id type_desc   total_pages first_iam_page first_page     root_page
tableHeapWithImageDefault      72057594197966848  IN_ROW_DATA 587         0x3DB302000100 0x3CB302000100 0x748707000100
tableHeapWithImageDefault      72057594198032384  LOB_DATA    227611      0x3BB302000100 0x38B302000100 0x38B302000100
tableClusteredWithImageDefault 72057594198228992  IN_ROW_DATA 587         0x4F8707000100 0x4E8707000100 0x768707000100
tableClusteredWithImageDefault 72057594198294528  LOB_DATA    227611      0x4D8707000100 0x4C8707000100 0x4C8707000100

Running the same option (elasped 15ms) change on the previously inlined-enabled tables:

SET STATISTICS TIME ON
exec sp_tableoption 'tableClusteredWithImageInline', 'large value types out of row', '1';
exec sp_tableoption 'tableHeapWithImageInline', 'large value types out of row', '1';
SET STATISTICS TIME OFF

With the unchanged pages:

name                          allocation_unit_id type_desc   total_pages first_iam_page first_page     root_page
tableHeapWithImageInline      72057594198097920  IN_ROW_DATA 1971        0xB91507000100 0x2E8B06000100 0x3FDA00000100
tableHeapWithImageInline      72057594198163456  LOB_DATA    225035      0x478707000100 0x418707000100 0x418707000100
tableClusteredWithImageInline 72057594198360064  IN_ROW_DATA 1971        0x558707000100 0x548707000100 0x4FDA00000100
tableClusteredWithImageInline 72057594198425600  LOB_DATA    225043      0x578707000100 0x568707000100 0x568707000100

So even that change has no impact. According to MSDN the reason for this is that the LOBs are only changed when updated. So this is also quite safe.

The same should be true for the other way around, however I have seen cases, where it took much longer with lots of logfile usage. Maybe you have an idea how I can recreate this scenario?

where - Das find des armen Windows Mannes

Ich gebe zu, ich benutze Windows. Sogar relativ gerne. Das liegt vor allem daran, dass ich es satt bin an meinem Desktop herumzuspielen (und keinen Zugang zu Macs habe). Aber als Linux developer kenne ich natürlich auch die Stärke einer Shell und der CLI tools. Deswegen habe ich auch immer ein Cygwin installiert so dass ich tools with find und grep nutzen kann. Ich finde die Windows Powershell sehr interessant und mächtig, bin es aber nicht gewohnt diese zu nutzen.

Deswegen lande ich auch oft in einem klassischen Windows Prompt (und ich nutze ConEmu um das erträglich zu machen). Ein Windows command das man auf jeden Fall kennen sollte ist where: es ist eine Kobination aus find, which und locate und erlaubt die Suche nach Files in Verzeichnissen oder Suchpfaden:


Suche ausführbare Befehle

Ohne zusätzliche Option durchsucht where das aktuelle Verzeichnis und den PATH. Das wird dazu benutzt um Befehle zu finden, dabei sind Suchmuster möglich:

C:\WINDOWS\system32>where java*
C:\Windows\System32\javaws.exe
C:\ProgramData\Oracle\Java\javapath\java.exe
C:\ProgramData\Oracle\Java\javapath\javaw.exe
C:\ProgramData\Oracle\Java\javapath\javaws.exe
C:\Program Files\Java\java-1.8.0-openjdk-1.8.0.111-1\bin\java-rmi.exe
C:\Program Files\Java\java-1.8.0-openjdk-1.8.0.111-1\bin\java.exe
C:\Program Files\Java\java-1.8.0-openjdk-1.8.0.111-1\bin\javac.exe
C:\Program Files\Java\java-1.8.0-openjdk-1.8.0.111-1\bin\javadoc.exe
C:\Program Files\Java\java-1.8.0-openjdk-1.8.0.111-1\bin\javah.exe
C:\Program Files\Java\java-1.8.0-openjdk-1.8.0.111-1\bin\javap.exe
C:\Program Files\Java\java-1.8.0-openjdk-1.8.0.111-1\bin\javaw.exe

Rekursive Suche

Um Dateien mit einem Suchmuster unterhalb eines Pfades zu suchen verwendet man die /r option. Mit der /t option gibt where dann gleich noch ein paar Datei Details aus:

C:\>where /T /R c:\Windows\System32 *.cmd
    843   30.10.2015   08:17:50  c:\Windows\System32\onlinesetup.cmd
    199   30.10.2015   08:17:43  c:\Windows\System32\winrm.cmd

Scripting Hilfe

Zudem gibt es noch seziellen Such Syntax, so kann ich alle in einer Environment Variable enthaltenen Verzeichnisse durchsuchen:

C:\>where $PATH:java
C:\ProgramData\Oracle\Java\javapath\java.exe
C:\Program Files\Java\java-1.8.0-openjdk-1.8.0.111-1\bin\java.exe

Oder aber in einer Liste von Verzeichnissen suchen:

C:\>where "C:\Windows\system32;C:\Windows\SysWOW64":mode
C:\Windows\System32\mode.com
C:\Windows\SysWOW64\mode.com

itblog Wiederbelebt

Nach unserem Server Umzug konnte ich mein Blog wiederbeleben. Zum Glück war der Update der Serendipity Blog Software so einfach, dass ich erst mal nicht die Platform wechseln werde (es gibt aber noch kleinere Probleme mit dem Syntax Highliter).

4096bit RSA Keys mit OpenPGP 2.1 Smartcards

Ich bereite die Einführung einer PGP PKI vor. Dazu habe ich mir ein paar Crypto Hardware Artikel beschafft und werde hier meine Erfahrungen verbloggen. Anfangen möchte ich mit den OpenPGP 2.1 Cards (von Zeitcontrol via Cryptoshop). Die Karten lassen sich direkt in dem connected Smart Card reader meines betagten Dell Latitude E6510 unter Windows 7 ansprechen. Dabei kommt der eingebaute Broadcom Reader zum Einsatz:

c:\Program Files\OpenSC Project\OpenSC\tools>opensc-tool -v -l
# Detected readers (pcsc)
Nr.  Card  Features  Name
0    Yes             Broadcom Corp Contacted SmartCard 0
     3b:da:18:ff:81:b1:fe:75:1f:03:00:31:c5:73:c0:01:40:00:90:00:0c CryptoStick v1.2 (OpenPGP v2.0)

c:\Program Files (x86)\GNU\GnuPG>gpg2.exe --card-status
Application ID ...: D27600012401020100050000xxxx0000
Version ..........: 2.1
Manufacturer .....: ZeitControl
Serial number ....: 0000xxxx
Name of cardholder: Bernd Eckenfels
Language prefs ...: en
Sex ..............: männlich

Läßt sich also ohne Probleme sowohl mit OpenSC 0.15.0 Win64 sowie GnuPG 2.0.29 (GPG2Win 2.3.0) ansprechen. Ich konnte mit dieser Kombination auch 3072bit RSA Schlüssel erstellen und nutzen. Problematisch wird es allerdings wenn man 4096bit RSA Schlüssel nutzen möchte. Die Karten bieten diese Option an (deswegen habe ich sie auch ausgewählt). Leider kann der eingebaute Reader keine Extended-APDU, somit schlägt der Versuch fehl entsprechende Keys zu erzeugen (eigentlich sollte er die Keys erzeugen können aber es sieht danach aus dass die anschliessende Übertragung fehlschlägt:

tools> openpgp-tool -r 0 -v --verify CHV3 --pin 12345678 --gen-key 1 --key-len 3072
Connecting to card in reader Broadcom Corp Contacted SmartCard 0...
Using card driver OpenPGP card.
Fingerprint:
9DA81881C7139920120ABBF8C50BD95C 9A7C7684

tools> openpgp-tool -r 0 -v --verify CHV3 --pin 12345678 --gen-key 1 --key-len 4096
Connecting to card in reader Broadcom Corp Contacted SmartCard 0...
Using card driver OpenPGP card.
... multiple minutes later...
Failed to generate key. Error Transmit failed.

c:\Program Files (x86)\GNU\GnuPG> gpg2.exe --card-status
Application ID ...: D27600012401020100050000xxxx0000
Version ..........: 2.1
Manufacturer .....: ZeitControl
Serial number ....: 0000xxxx
Name of cardholder: Bernd Eckenfels
Language prefs ...: en
Sex ..............: männlich
URL of public key : [nicht gesetzt]
Login data .......: [nicht gesetzt]
Signature PIN ....: nicht zwingend
Key attributes ...: 4096R 4096R 4096R
Max. PIN lengths .: 32 32 32
PIN retry counter : 3 0 3
Signature counter : 0
Signature key ....: [none]
...

Ach ja übrigens, noch ein paar Anmerkungen: Es ist wichtig gpg2.exe (nicht gpg.exe) zu verwenden, bei PGP4Win werden beide binaries in unterschiedlichen Versionen parallel installiert. Bei gpg2 muss man darauf achten dass es auf einige Hintergrundprozesse angewiesen ist (pinentry und scdaemon). Das kann schon mal zu Verwirrungen führen (z.b. Unter älteren Linux Varianten kann sich wohl ein Gnome daemon als pgp-agent ausgeben und dann smartcard befehle abweisen. Mit gpg-connect-agent -v und dem Befehl SCD GETINFO version lässt sich prüfen welcher Agent verwendt wird. In meinem Setup hängt sich auch die GPA artenverwaltng auch, habe noch nicht herausgefunden woran dies liegt.

Mit der Verwendung eines externen USB Readers der Extended APDU unterstützt (Gemalto IDBridge Ct710) lässt sich der 4096bit Key erstellen und nutzen:

c:\Program Files\OpenSC Project\OpenSC\tools>opensc-tool -v -l
# Detected readers (pcsc)
Nr.  Card  Features  Name
0    Yes             Broadcom Corp Contacted SmartCard 0
     failed: Card not present
1    Yes   PIN pad   Gemalto IDBridge CT7xx 0
     3b:da:18:ff:81:b1:fe:75:1f:03:00:31:c5:73:c0:01:40:00:90:00:0c CryptoStick v1.2 (OpenPGP v2.0)

c:> echo debug-all > C:\users\eckenfel\AppData\Roaming\GnuPG\scdaemon.conf
c:> echo log file c:/temp/scdaemon.log >> C:\users\eckenfel\AppData\Roaming\GnuPG\scdaemon.conf
c:> echo reader-port "Gemalto IDBridge CT7xx 0" >> C:\users\eckenfel\AppData\Roaming\GnuPG\scdaemon.conf

c:\Program Files (x86)\GNU\GnuPG> gpg2 --card-edit -v

Application ID ...: D27600012401020100050000xxxx0000
Version ..........: 2.1
...
gpg/card> admin
gpg/card> generate
Make off-card backup of encryption key? (Y/n) n

gpg: NOTE: keys are already stored on the card!

Replace existing keys? (y/N) y
What keysize do you want for the Signature key? (3072) 4096
The card will now be re-configured to generate a key of 4096 bits
What keysize do you want for the Encryption key? (3072) 4096
The card will now be re-configured to generate a key of 4096 bits
What keysize do you want for the Authentication key? (3072) 4096
The card will now be re-configured to generate a key of 4096 bits
...
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
gpg: writing self signature
gpg: RSA/SHA256 signature from: "CE551545 [?]"
gpg: writing key binding signature
gpg: RSA/SHA256 signature from: "CE551545 [?]"
gpg: writing key binding signature
gpg: RSA/SHA256 signature from: "CE551545 [?]"
gpg: writing key binding signature
gpg: RSA/SHA256 signature from: "CE551545 [?]"
gpg: writing key binding signature
gpg: RSA/SHA256 signature from: "CE551545 [?]"
gpg: writing public key to `C:/Users/eckenfel/AppData/Roaming/gnupg/pubring.gpg'
gpg: writing secret key stub to `C:/Users/eckenfel/AppData/Roaming/gnupg/secring.gpg'
gpg: using PGP trust model
gpg: key CE551545 marked as ultimately trusted
public and secret key created and signed.

pub   4096R/CE551545 2016-06-05 [expires: 2016-06-06]
      Key fingerprint = 1C93 E95E 0486 C55C 0762  3629 20CC CA05 CE55 1545
uid       [ultimate] Bernd Eckenfels (test) <test@test>
sub   4096R/F738D4AE 2016-06-05 [expires: 2016-06-06]
sub   4096R/309D4991 2016-06-05 [expires: 2016-06-06]

Das Erstellen von 3 Schlüsseln (inkl. Signaturen, ohne Encryption Key backup - d.h. auch auf der Karte erstellt) mit 4096 bit dauert (stark schwankend) 30 Minuten, die selbe Prozedur mit 3072 bit Schlüssel erfolgt in 8 Minuten.

Bei der Erstellung der Schlüssel gibt pgp2 wenige Zwischenschritte aus, man kann das ganze aber im scdaemon logfile nachvollziehen. Wie oben zu sehen war es auch notwendig den Klartext Namen des externen Card Readers zu konfigurieren, scdaemon hat reader-port 1 oder reader-port 32769 (trotz Neustart) schlichtweg ignoriert. Auch wenn der richtige Reader verwendet wird scheint die Debug Ausgabe nur den Slot des Readers aber nicht den gewählten Reader auszugeben:

scdaemon[14808] Handhabungsroutine f³r fd -1 gestartet
scdaemon[14808] detected reader `Broadcom Corp Contacted SmartCard 0'
scdaemon[14808] detected reader `Gemalto IDBridge CT7xx 0'
scdaemon[14808] detected reader `'
scdaemon[14808] reader slot 0: not connected

Bei der Key-Erstellung hat gnupg2 das externe Keypad des Gemalto readers für die PIN Eingabe (noch) nicht benutzt.

Falschfarben und hängende Eingabe bei Samsung Galaxy Tab 3 10.1 reparieren

Ich habe schon längere Zeit ein Samsung Galaxy Tab 3 10.1 (GT-P5200). Das Gerät ist den ganzen Tag im Einsatz. Nach einem etwas unfreiwilligen Sturz auf das Laminat zeigte das Tab nur noch sehr grob-pixelige Bilder in Falschfarben an. Das scheint ein relativ weit verbreitetes Problem bei den Geräten zu sein. Leider gab es in den diversen Foren keine wirkliche Hilfe (es ist jedenfalls nicht die "Inverted Screen" Android Funktion für erleichterte Bedienung). Meine Hoffnung war eine lockere Steckverbindung, und so habe ich mich dran gemacht das Gerät selbst zu inspizieren.

Zuerst habe ich ein Youtube Video gefunden bei dem beschrieben wird, wie man den Akku in dem Tab austauscht. Das war sehr hilfreich, dort kann man nämlich erkennen wie man das Gehäuse öffnet. Entgegen meiner ersten Annahme hebelt man es von der Vorderseite aus auf. Leider habe ich nicht das gezeigte Plastikwerkzeug, aber mit einem Messer oder flachen Schraubendreher ist es recht einfach den Rand nach außen zu heben und das Innenleben anzuheben. Im Wesentlichen muss man nur darauf achten nicht zu tief einzustechen.

Nach dem Öffnen sieht man auch gleich drei Flachbandkabel. Zwei davon sind für Display und Digitizer zuständig, das dritte führt zu der USB Buchse. Auf dem linken braunen Kabel befindet sich die Bezeichnung MCF-101* - dies ist das Kabel für den Touch Digitizer. Das ist besonders empfindlich da es mehrere Stiftreihen hat. Das rechte schwarze Kabel (ST1_LCD*) ist für die Anzeige.

Wie im Video gezeigt (TC 4:45:00) muss man zuerst die Klebestreifen ablösen, dann einen kleinen Bügel anheben und kann dann die Kabel herausziehen oder wieder ordentlich einstecken. Hat das Display Kabel Kontatprobleme kommt es zu Anzeigefehlern, beim Digitizer reagieren einzelne Bereiche nicht auf Touch oder die Auswahl springt.


Tab InnenlebenIch hatte mehrere Versuche benötigt weil ich zunächst das falsche Kabel gelöst hatte. Am Ende war es dann aber recht einfach. Beide Kabel habe ich mit neuen Klebestreifen fixiert. Ich würde empfehlen das Gerät vor dem Verkleben oder Zusammenbau auszuprobieren (dabei nie auf die Elektronik fassen).

Meine Vermutung ist dass eine Erschütterung des Gerätes sich auf die Kabel auswirkt weil diese über den schweren Akku verlaufen, dort teilweise sogar festgeklebt sind. Ich habe entsprechend vermieden die Kabel mit dem Akku zu verkleben.

Facebook messages mit Jitsi nutzen

Facebook bietet (noch) an auf Chat Messages mittels XMPP clients zuzugreifen. Jitsi ist ein Messenger, Sprach- und Video-Konferenz Client, der unter anderem für Facebook Chats schon vorbereitet ist.Als Java Anwendung kann er unter Windows, Linux und OS X genutzt werden.

Um Facebook in Jitsi zu nutzen fügt man ein neues Konto mit dem Typ des Netzwerks  "Facebook" aus, und muss dann nur noch Benutzername und Passwort eingeben. Allerdings sollte man beachten, vorher einen Nutzernamen in den Facebook Einstellungen angelegt zu haben.

Ist das eigene Facebook Konto mit einem Codegenerator oder einer Anmeldebestätigung gesichert (was sehr zu empfehlen ist), so lehnt der Facebook XMPP Server die Anmeldung ohne weitere Begründung ab (evtl. wird eine SMS mit XMPP Login Passwort verschickt). In diesem Fall muss ein spezielles Anwendungspasswort erstellt werden. Das ist schon alleine deswegen sinnvoll weil diese Passwörter die auf Rechnern hinterlegt sind getrennt von Konto Passwort verwaltet werden können.

In der Facebook Titelleiste auf den Menu Pfeil clicken, dann auf Einstellungen gehen. In der folgenden Seite den Benutzername prüfen und ggf anlegen.


Dann in der linken Menuleiste auf Sicherheit wechseln, dort "Anwendungspasswörter" bearbeiten, hinter dem "generieren" Link findet sich ein kleiner Dialog.

Dieser fragt nach dem Facebook Anmeldepasswort und dann kann man einen frei gewählten Namen für das Passwort eingeben kann (z.B. "Jitsi auf Notebook").

Dann wird ein zufälliges Passwort angezeigt, dieses kann man in Jitsi verwenden.

 In Jitsi ist zu beachten dass der Screen in der Deutschen Version ein Feld namens "E-Mail" hat, dort ist aber der Benutzername einzugeben (Issue#155).

Ein Vorteil der Anwendungspasswörter ist es übrigens, dass man diese widerrufen kann (falls jemand Hoffnungen hatte).